CALCULATION OF MAXIMUM TEMPERATURE DROPS
AND THERMAL STRESSES IN HEATED CYLINDERS
OF INFINITE LENGTH

N. Yu. Taits, A. G. Sabel'nikov, UDC 536.21:539.31
and V. V. Moshura

This paper presents analytical solutions for maximum temperature drops, and graphs and
criterial relationships for the determination of maximum thermal stresses in heated cylin-
ders with initial radial temperature variation.

Thermal stresses are one of the main limitations to the rate of heating of metals in furnaces. It
has previously been shown [1], that when solids are heated some time elapses before the maximum tem-
perature differences occur over section of the solid. According to majority of authors [2, 3] the maximum
thermal stresses occur when the temperature differences are maximum. The volume of material with this
maximum stress is then the parameter which limits its ratio of heating.

It is therefore of interest to determine the magnitude of the maximum temperature difference for
various heating conditions and the time taken to establish this difference.

The present authors have investigated the heating of an infinite cylinder with a constant ambient
temperature which case is frequently encountered in furnaces in steel mills.

In this case the temperature difference between the surface and axis of the cylinder of infinite length
is given by [2]
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The time at which the maximum temperature difference occurs is given by
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If only the first two terms of equation are taken, a simpler equation is obtained
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Fig. 1. Relative maximum temperature difference (Atm/ (tfurn -—t°))
versus Biot and Fourier numbers.

Fig. 2. Fourier number at maximum temperature drop over solid sec-
tion (Fo) Aty, versus Biot number (Bi) and relative initial temperature
difference (Aty/ (t?fum—tg)). Numbers near curves are values of Aty

/(teurn —tp)-
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Equation (3) gives the value of 7 at which the temperature difference Atm is a maximum for the given

condition.

Substitution of the first value of (a7/R%) Atpy into ‘equation (1) allows calculation of the maximum tem-
perature differences occurring when the cylinder is heated
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The solution obtained is presented graphically (Fig. 1) in the form (Atm/ (tggrn—to)) =£[Bi, (FO)Atm]-

A gimilar relationship can be obtained when there is an initial temperature difference at the start
of heating of the cylinder of infinite length.

In this case
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Fig. 3. Relative maximum temperature drop in solid (Aty,/(teyprn
—t%)) versus Biot number (Bi) and relative initial temperature

difference (Aty/(teypn —t%)). Numbers near curves are values of
Aty/(tfurn —tg).

1 ' N -
Fig. 4. Functions &, rﬁé, $; versus Biot and Fourier numbers
(Bi, Fo).
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To obtain (Fo) Atm the first value of equation (7) is found
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or taking only the first two terms
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Using (8) gives the maximum temperature difference from (7). Then
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Equations (8) and (9) are presented graphically (Figs. 2,3).

These equations can be used to calculate the maximum thermal stress occurring during heating of
the cylinder.

To do so in practical cases of metal heating it is necessary only to evaluate stresses at the surface
and on axis of the specimen since these are the maximum stresses [2].

If the initial temperature t, of the solid is uniform over its section, and the temperature of the ambient
medium is tfypn = const for the whole of the heating process, then for the calculation of the radial oy, tan-
gential oy, and axial o, stresses the following slightly changed equations are used 2]
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Calculations of the stresses have been made for cases in which the initial temperature differences
along the infinite cylinder are known.

For such infinite cylinders the thermal stresses can generally be described [2] by the following equa-

tions
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The values of t and t_r were obtained first for the cases being considered
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where the integral is in the form of X xdy (ax) dx = (1/a)xJ, (ax) + const [4].
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By iteration
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Substituting the values of t and TLr into Equation (13) further iteration gives
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The radial stress at the cylinder surface (r/R =1)
o =0.
The radial stress at the cylinder axis (r/R = 0)
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Substitution of (16) and (17) into Equation (14) and iteration gives
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The tangential stress at the surface (r/R =1) and on the axis (r/R = 0) of the cylinder are given by
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Substitution of (16) and (17) into Equation (15) gives equation for the axial stress at the surface and on
the axis of the cylinder

(22)

E
o —l—f‘:—v{ (8 — tram) ¥ Go 27, () — oo ()] exp (— 12 Fo)
n=1
N 2
Aty N M, [27, (1) — o (4,)] €xp (— p2Fo) 23)
n=|
_ _BE
L —rf,mo) G [24, (14) —hy] eXp (— B2 FO)
n——l
—at, N M 127, (0,) — 1] exp (— w2Fo)
0 n[ 1 Mn !“’n] P p‘n . (24)
n=1
The preceding equations can also be given in nondimensional form
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If the first order solution of the above equation is presented graphically ([2]) then the second being

of the form &, (e7/R?; @ R/A; r/R) can also be represented graphically (Fig. 4) which is convenient for
practical use.

The above equations for the stress in a cylinder can be written as functions of temperature differ-
ence. Equation (25) then becomes
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Substitution of the maximum temperature difference Aty, into (26) allows calculation of the maximum
possible thermal stress for the particular heating condition, being considered.

NOTATION
At =tg—tgx temperature difference between surface and cylinder axis, °C;
S radius of eylinder, m;
tg initial temperature of solid, °C;
tfurn temperature of furnace, °C;
a thermal diffusivity, m?/h;
T heating time, h;
3y, Iy Bessel functions of the first and zeroth orders;
“n roots of characteristic equation pd; (p)=Bi I (w);
Bi Biot number;
Fo Fourier number;
{Fo) Atm Fourier number at maximum temperature difference;
tg) temperature of cylinder surface at initial heating time-moment, °C;
Aty initial temperature difference over solid section, °C;
Jy (py) Bessel functions of the second order;
B linear expansion coefficient;
v Poisson ratio;
t mean temperature over cylinder section, °C;
ty mean temperature over a portion of cylinder section bounded with coordinate r, °C.
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